Get Gifs at CodemySpace.com

Sabtu, 30 Maret 2013

SISTEM PERSAMAAN LIEAR TIGA VARIABEL (SPLTV)



Sistem Persamaan Linear Tiga Variabel
1. Bentuk Umum
ax + by + cz = p
dx + ey + fz = q
gx + hy + iz = r
                a, b, c, d, e, f, g, h, I, p, q, r ÎR
                a, d, g = koefisien dari x
                b, e, h = koefisien dari y
                c, f, i  = koefisien dari z
                p, q, r = konstanta
                x, y, z = variabel
2. Penyelesaian Sistem Persamaan Linear Tiga Variabel

Sebagai contoh, marilah kita coba untuk mencari solusi sistem persamaan linier dengan tiga variabel berikut ini
x+yz=1    (1)
8x+3y6z=1    (2)
−4xy+3z=1    (3)

Metode eliminasi

Metode ini bekerja dengan care mengeliminasi (menghilangkan) variabel-variabel di dalam sistem persamaan hingga hanya satu variabel yang tertinggal.
Pertama-tama, lihat persamaan-persamaan yang ada dan coba cari dua persamaan yang mempunyai koefisien yang sama (baik positif maupun negatif) untuk variabel yang sama. Misalnya, lihat persamaan (1) dan (3). Koefisien untuk y adalah 1 dan -1 untuk masing-masing persamaan. Kita dapat menjumlah kedua persamaan ini untuk menghilangkan y dan kita mendapatkan persamaan (4).
x+yz=1    (1)
−4xy+3z=1    (3)
-------------------------+
−3x  +2z=2    (4)
Perhatikan bahwa persamaan (4) terdiri atas variabel x dan z. Sekarang kita perlu persamaan lain yang terdiri atas variabel yang sama dengan persamaan (4). Untuk mendapatkan persamaan ini, kita akan menghilangkan y dari persamaan (1) dan (2). Dalam persamaan (1) dan (2), koefisien untuk y adalah 1 dan 3 masing-masing. Untuk menghilangkan y, kita kalikan persamaan (1) dengan 3 lalu mengurangkan persamaan (2) dari persamaan (1).
x+yz=1    (1)     × 3    3x+3y3z=3    (1)
8x+3y6z=1    (2)
8x+3y6z=1    (2)

--------------------------

−5x  +3z=2    (5)
Dengan persamaan (4) dan (5), mari kita coba untuk menghilangkan z.
−3x+2z=2    (4)     × 3    −9x+6z=6    (4)
−5x+3z=2    (5)     × 2    −10x+6z=4    (5)

-------------------------

x  =2    (6)
Dari persamaan (6) kita dapatkan x = 2. Sekarang kita bisa subtitusikan (masukkan) nilai dari x ke persamaan (4) untuk mendapatkan nilai z.
−3(2) + 2z = 2    (4)
−6 + 2z = 2
2z = 8
z = 8 ÷ 2
z = 4
Akhirnya, kita substitusikan (masukkan) nilai dari z ke persamaan (1) untuk mendapatkan y.
2 + y − 4 = 1    (1)
y = 1 − 2 + 4
y = 3
Jadi solusi sistem persamaan linier di atas adalah x = 2, y = 3, z = 4.

Metode substitusi

Pertama-tama, marilah kita atur persamaan (1) supaya hanya ada 1 variabel di sebelah kiri.
x = 1 − y + z    (1)
Sekarang kita substitusi x ke persamaan (2).
8(1 − y + z) + 3y − 6z = 1    (2)
8 − 8y + 8z + 3y − 6z = 1
−5y + 2z = 1 − 8
−5y + 2z = −7    (4)
Dengan cara yang sama seperti di atas, substitusi x ke persamaan (3).
−4(1 − y + z) − y+ 3z = 1    (3)
−4 + 4y − 4zy+ 3z = 1
3yz = 1 + 4
3yz = 5    (5)
Sekarang kita atur persamaan (5) supaya hanya ada 1 variabel di sebelah kiri.
z = 3y − 5    (6)
Kemudian, substitusi nilai dari z ke persamaan (4).
−5y + 2(3y − 5) = −7    (4)
−5y + 6y − 10 = −7
y = −7 + 10
y = 3
Sekarang kita sudah tahu nilai dari y, kita dapat masukkan nilai ini ke persamaan (6) untuk mencari z.
z = 3(3) − 5    (6)
z = 9 − 5
z = 4
Akhirnya, kita substitusikan nilai dari y dan z ke persamaan (1) untuk mendapatkan nilai x.
x = 1 − 3 + 4    (1)
x = 2
Jadi, kita telah menemukan solusi untuk sistem persamaan linier di atas: x = 2, y = 3, z = 4.



Metode Matriks Invers

Sistem persamaan linier yang terdiri atas persamaan-persamaan (1), (2), dan (3) di atas dapat juga ditulis dengan bentuk notasi matriks AB = C seperti berikut
 
 
 
11-1
83-6
-4-13
 
 
 
 
 
 
x
y
z
 
 
 
=
 
 
 
1
1
1
 
 
 
Solusinya adalah matriks B. Agar kita dapat mengisolasi B sendirian di salah satu sisi dari persamaan di atas, kita kalikan kedua sisi dari persamaan di atas dengan invers dari matriks A.
A−1AB = A−1C
B = A−1C
Sekarang, untuk mencari B kita perlu mencari A−1. Silakan melihat halaman tentang matriks untuk belajar bagaimana mencari invers dari sebuah matriks.
A−1 =
 
 
 
-323
012
-435
 
 
 

B =
 
 
 
-323
012
-435
 
 
 
 
 
 
1
1
1
 
 
 
B =
 
 
 
2
3
4
 
 
 

Jadi solusinya adalah x = 2, y = 3, z = 4.
Metode ini dapat digunakan untuk menyelesaikan sistem persamaan linier dengan n variabel. Kalkulator di atas juga menggunakan metode ini untuk menyelesaikan sistem persamaan linier.

Eliminasi Gauss / Eliminasi Gauss-Jordan

Sistem persamaan liniear yang terdiri atas persamaan-persamaan(1), (2), dan (3) dapat juga dinyatakan dalam bentuk matriks teraugmentasi A seperti berikut
A =
 
 
 
11-11
83-61
-4-131
 
 
 
Dengan melakukan serangkaian operasi baris (Eliminasi Gauss), kita dapat menyederhanakan matriks di atas untuk menjadi matriks Eselon-baris.
A =
 
 
 
10,375-0,750,125
01-0,41,4
0014
 
 
 
Kemudian kita bisa substitusikan kembali nilai-nilai yang kita dapat untuk mencari nilai dari semua variabel. Atau, kita juga bisa meneruskan dengan serangkaian operasi baris lagi sehingga matriks di atas menjadi matriks yang Eselon-baris tereduksi (dengan menggunakan Eliminasi Gauss-Jordan).
A =
 
 
 
1002
0103
0014
 
 
 
Dengan melakukan operasi Eliminasi Gauss-Jordan, kita mendapatkan solusi dari sistem persamaan linier di atas pada kolom terakhir: x = 2, y = 3, z = 4.



Sumber:

http://www.idomaths.com/id/persamaan_linier.php


Share on :

Tidak ada komentar:

Posting Komentar